
Journal of Computer Science and Engineering Research (JCSER)

Volume 2, Issue 1, Date: 30 - June – 2025

 27

 Received: 1-12-2024

 Revised: 25-6-2025

 Published: 30-6-2025
This article is freely accessible under the Creative Commons Attribution License, allowing for its use, distribution, and reproduction in any format, as long as

the original work is correctly cited. © 2025 The Authors.

A Full Overview of Visual SLAM Algorithms
Rajaa W. Ali 1, Heba Hakim. 2, Dr. Mohammed A. Al-Ibadi 3

1, 2, 3 Computer Department, Basrah University, Basrah, Iraq

Email: 1 pgs.rajaa.wejood@uobasrah.edu.iq, 2 hiba.abdulzahrah@uobasrah.edu.iq, 3 mohammed.joudah@uobasrah.edu.iq

Abstract—Simultaneous Localization and Mapping, or

SLAM, is an essential approach for autonomous robotic

systems. Simultaneous mapping and sensor pose estimation are

made possible by SLAM in an unknown environment. Visual

simultaneous localization and mapping, often known as V-

SLAM, is an important field in robotics, particularly for

cooperative and interactive mobile robot environments. Faster

development of Visual SLAM can be attributed to low-cost

sensors, easy integration of additional sensors, and improved

ambient information. Numerous strategies and techniques for

implementing visual-based SLAM systems are presented in the

literature. It might be challenging for a novice in this field to

sort through the range of publications, recognize and evaluate

the key algorithms, and ultimately select the best one for their

intended use. Therefore, we present the three main visual-

based SLAM approaches (visual alone, visual inertial, and

RGB-D SLAM), emphasizing their salient features and

limitations. We also use flowcharts and diagrams to examine

the main algorithms of each approach. It tracks the

development of SLAM techniques historically and offers

contrastive evaluations of concepts and salient ideas. The

research examines important Visual SLAM benchmark

datasets and offers process-level visualization for every

method. This research aims to cover the essential elements and

characteristics of SLAM methodologies, providing a

foundational resource for understanding and selecting

appropriate techniques.

Keywords—Benchmark; Mobile Robots; RGB-D SLAM;

Visual-SLAM; Visual-Inertial SLAM.

I. INTRODUCTION (HEADING 1)

In 1986, Smith established the notion of simultaneous

localization and mapping (SLAM), which is a basic need for

many robotic applications [1,2]. SLAM technology allows

mobile robots to generate an environment map and estimate

their own location in real time, without requiring any prior

environmental information, based on inputs from one or

more sensors. In robotics, mapping is essential since it

makes landmarks visible and simplifies the use of SLAM.

Because of its capacity to carry out navigation and

perception concurrently in an unfamiliar area, SLAM has

grown in popularity over the last several decades and drawn

the interest of numerous scholars [3]. Based on the specific

data collecting tools they employ, there are two major

categories of SLAM systems in use today.

 The foundation of the first kind is provided by light

detection and ranging, or LiDAR, sensors [4]. Most

autonomous vehicles employ expensive LiDAR based

SLAM. The second type, known as visual SLAM [5], offers

cheap flow costs and a small volume as benefits. It utilizes

an image sensor. It may offer motion estimate if texture data

were more plentiful. the portrayal of the environment in

visual form. Additionally, when returning to previously

recorded places, it might help in estimating the robot's state,

moving it, and minimizing estimate errors [8].When the

global positioning system (GPS) is unavailable, like in

interior scenarios, visual SLAM plays a crucial role because

of its rapid ambient awareness and autonomous localization

capabilities [6, 7].

The map development process also involves two additional

tasks: localization and route planning. According to

Stachniss [9], path planning, localization, and mapping are

essential functions that allow a robot to comprehend its

environment, ascertain its location, and create paths to

certain destinations. SLAM is one technique that combines

the mapping and localization phases. SLAM algorithms

employ data from several sensors. Visual SLAM, or just

using visual sensors, may require the use of a monocular

RGB camera [18], a stereo camera [19], or an

omnidirectional camera (which takes simultaneous photos in

all 360-degree directions) [20]. As a result of their restricted

visual input, they are more technically demanding [10], or

RGB-D cameras (RGB-D SLAM) capture RGB images in

addition to depth pixel data [21]. Visual-inertial (VI)

SLAM, an inertial measurement unit (IMU) that is small,

low-cost, and achieves high accuracy, is essential for many

applications that demand lightweight design. It is a crucial

component for several applications, including driverless

racing vehicles, that require lightweight construction [11].

In order to provide an overview and a basic understanding

of the problem of simultaneous localization and mapping

(SLAM), Bailey and Durrant-Whyte [12] investigate the

recursive Bayesian formulation of the SLAM problem. This

approach produces probability distributions, vehicle posture

estimates, and absolute or relative landmark placements. A

concise synopsis of the graph-based SLAM problem is

given by Grisetti et al. (2008). To provide SLAM solution

methodologies in mobile robots and its wide application,

Taheri et al. [13] provide a useful survey and an effective

overview. Basheer et al. [14], Macario Barros et al. [15]

separated VSLAM techniques into three classes: visual only

(monocular), visual inertial (stereo), and RGB-D SLAM.

This division was made in consideration of the studies and

surveys of visual aids. Additionally, they put out a number

of criteria for decomposing and examining VSLAM

algorithms. The first review of VI-SLAM approaches from

both an optimization based and filtering-based standpoint is

Chen et al. [16]. The RGB-D SLAM system's core concept

and structure were first presented by Zhang et al. [17].

Basheer et al. [14] additionally, focuses on the integration of

the robotic environment with a robot operating system

(ROS) as Middleware. Additionally, Macario Barros et al.

Journal of Computer Science and Engineering Research (JCSER) 28

Rajaa W.Ali, Heba Hakim, Mohammed A. Al-Ibadi, A Full Overview of Visual SLAM Algorithms

[15] offer a summary of each approach's primary algorithms

using flowcharts and diagrams. Taketomi et al. [23] and

Covolan et al. [22] focus on visual only and RGB-D-based

techniques and outline the key algorithms, providing an

overview of the key ideas utilized in the visual based SLAM

systems. al. Servières [24] give a summary of the current V-

SLAM and VI-SLAM designs before going on to classify a

fresh batch of twelve primary state-of-the-art techniques.

Robots that are mobile and adaptive enough to function

successfully in new surroundings are essential in today's

society. Thus, simultaneous localization and mapping, or

SLAM, is an important technique for these robots. Durrant-

Whyte (2012) and Mohamed et al. (2008) state that the

primary goal of SLAM is to allow for autonomous

exploration and navigation of foreign environments by

simultaneously creating a map and determining the user's

location. It can also make decisions in real-time, so robots

don't need to refer to previously made maps. The capacity of

the robot to perceive and successfully interact with its

environment is enhanced by its usefulness in the extraction,

organization, and interpretation of data. Describe the RGB-

D SLAM system's fundamental idea and architecture.

Previous research has demonstrated the effectiveness of V-

SLAM techniques; nevertheless, they are often provided

with limited data and unique figures, making it challenging

to understand, assess, and select one from the group.

Therefore, our effort focuses on simplifying the descriptions

of V-SLAM techniques to make them easier for readers to

grasp. The main contributions of the study are summarized

as follows:

• Examining V-SLAM techniques to identify the

most effective robotics tools.

• In order to enhance comprehension of the

operational procedures associated with V-SLAM, a

graphical and illustrative structural workflow was

developed for every approach.

• Determining key factors for the V-SLAM

approaches' evaluation and selection criteria.

• Making a table of comparisons with the salient

features and parameters of each V-SLAM

technique.

• The discussion and display of relevant datasets

used in the robotics application domain.

 The paper is organized as follows: An introduction

of the V-SLAM paradigm that explores its core ideas is

provided in Section 2. The key ideas of the three chosen

techniques are presented in Section 3. Section 4 delves into

the development of V-SLAM and examines the datasets that

are most frequently utilized. The guidelines for assessing

and choosing visual SLAM techniques are covered in

Section 5. The article's conclusion, which summarizes the

most important ideas, is found in Section 6.

II. VISUAL BASED SLAM TECHNIQUIES

Three primary processes are involved in visual-based

SLAM systems, which employ cameras to create 3D maps

from 2D images: initialization, tracking, and mapping (Fig.

1) [10]. Initialization produces an initial map and establishes

a global coordinate system. By comparing 2D–3D

correspondences, tracking keeps the camera in relation to

the map and frequently resolves the Perspective-n-Point

(PnP) issue [25, 26]. When additional regions are viewed,

mapping enlarges the map. The majority of V-SLAM

algorithms rely on intrinsic camera parameters that have

been pre-calibrated, whereas extrinsic parameters (rotation

and translation) determine camera positions.

Fig. 1 General elements of a vision-based SLAM. A dense reconstruction

(Reprinted from [30]), a semi-dense map, and a sparse map in the MH_01

sequence [28]). Taken from [15].

A 2D image, a 2D image with depth data, or both can be

the input for a visual-SLAM system, as shown in Figure 1,

depending on the technique employed (visual only, visual

inertial, or RGB-D based, respectively). Among the

situations that this system may be used to efficiently build

and implement are semantic segmentation [32], pixel-wise

motion segmentation [31], and filtering techniques [33, 34].

These methods seek to provide a professional approach for

an image of the V-SLAM operations. It makes sense to

separate the operational framework into four parts, which

are listed and covered below.

A. Setting up the System and Collecting Data

In this step of V-SLAM, which involves capturing and

processing images. It involves setting up cameras such as

RGB-D cameras, depth cameras, or infrared sensors for data

gathering and system setup [35]. Camera calibration, which

is often the first step in system startup, determines intrinsic

and extrinsic properties for accurate mapping and

localisation. Effective initialization techniques are essential

for precise SLAM tracking and mapping because they

minimize error propagation and frequently make use of pre-

existing data or manual starting locations [36]. A properly

calibrated and initialized system is crucial for efficient

VSLAM performance, as demonstrated by the fact that the

choice of suitable data acquisition techniques and

initialization strategies directly affects the system's capacity

to handle a variety of dynamic and varied environments

[37].

B. Localization of the System

The second stage of V-SLAM, an important phase in the

process overall, has as its main objective determining the

position of the system [38]. Pose estimation [42], or

localization, is the process by which the system precisely

determines where it is in the environment. This step entails

estimating the camera's position and orientation in space

with respect to the previously constructed map using data

from the visual sensor, which is often a camera. Using

methods like ORB (Oriented FAST and Rotated BRIEF) or

Journal of Computer Science and Engineering Research (JCSER) 29

Rajaa W.Ali, Heba Hakim, Mohammed A. Al-Ibadi, A Full Overview of Visual SLAM Algorithms

SIFT (Scale-Invariant Feature Transform), the system

recognizes and compares important aspects from the current

frame with those seen in previous frames. This phase, which

is critical to maintaining the system's accuracy while

navigating the environment, frequently incorporates loop

closure detection to rectify drift by identifying and

realigning with previously visited places [39,40,41]. This

process relies on several key components: feature tracking,

feature matching, relocalization, and pose estimation. Each

of these components plays a crucial role in ensuring that the

V-SLAM system can accurately localize itself within the

environment, thereby maintaining a consistent and accurate

map. To estimate camera motion in visual SLAM, detected

characteristics are tracked throughout frames and compared

to those in a map or earlier frames. Nearest neighbor search

and descriptors aid in finding matches, whereas RANSAC

eliminates untrustworthy ones. By comparing the current

frame attributes with the map, relocalization recovers the

camera's attitude once tracking is lost because to rapid

movement or occlusion. Pose estimation, which aligns 2D

picture points to their 3D counterparts using the

Perspective-n-Point (PnP) technique, uses monitored and

matched data to identify the exact camera location and

orientation. V-SLAM systems achieve real-time localization

and mapping through feature tracking, pose optimization,

and relocalization, essential for applications in robotics,

augmented reality, and autonomous vehicles.

C. System Map Creation

SLAM systems employ several mapping techniques,

including occupancy grids and point clouds, depending on

the kind of information, sensor, and application

requirements [43, 44]. Localization and mapping work

together to keep a trustworthy, current map. Robotics uses

grid maps to simulate actual environments. Each cell in the

map represents a specific place and stores information about

barriers, geography, and occupancy. For robots, feature-

based SLAM uses maps that depict environmental elements,

such as landmarks, to help in localization and navigation

[45, 46]. Specialized sensors produce a 3D point cloud,

which visualizes the spatial arrangement to improve

comprehension of the surroundings [47]. Keyframe setup

during localization results in field modeling, where

important spots and feature lines are found for the

production of maps [48]. The map is updated in real-time as

the robot's location is continually tracked [49]. A key

component of feature-based SLAM, bundle adjustments

(BAs) improve accuracy by fine-tuning the placement and

structure of observed points [50–52].

D. Process Tuning & Loop Closure

Loop closures and system tuning are used to optimize

the map in the latter stage of the V-SLAM process.

Enhancing the system's precision, dependability, and long-

term consistency requires process tuning and loop closures.

Process tuning strikes a balance between accuracy,

computing efficiency, and resilience by modifying and

optimizing a variety of parameters and algorithms, such as

pose estimation techniques and feature detection

sensitivities. This entails optimizing algorithms and

balancing resource limitations with performance,

particularly in real-time systems like robots or augmented

reality. The system's constant performance is ensured by

extensive testing in various scenarios.

By re-aligning the system with previously mapped locations

through pose graph optimization, loop closure in V-SLAM

fixes map drift and preserves map accuracy, particularly in

dynamic situations.

 Fig 2 show an explanation of the procedures carried out

within V-SLAM. The V-SLAM framework is made up of

successive phases arranged to construct the system and

process its data.

Camera

Sensor

Dataset

Intialization

Filtering

Feature Tracking

Feature Matching

Relocalization

Pose Estimation K
e

y
F
r
a

m
e

In

s
e

r
t
io

n ,,,,,,l;Points Defining

Lines defining

Field Modeling B
u

n
d

le
 A

d
ju

s
t
m

e
n

t

Loop closing

Data Acquision System localization System Mapping
System Tuning

Loop Detection

Candidates

Bag of Words

Optimization

Computing

Loop Correction

System Output

Fig. 2 Adapted from [53]. An overview of the four core components

necessary for visual SLAM.

III. VISUAL SLAM MODEL

By utilizing cutting-edge sensors, deep learning, and

machine learning, V-SLAM seeks to advance robotics by

estimating camera motion and 3D structure in unfamiliar

situations [54, 55]. The topology of V-SLAM is divided into

three categories, as shown in Fig. 3: visual-inertial SLAM,

RGB-D SLAM, and just visual SLAM [57]. Different

methods are assessed according to six important criteria:

algorithm type, map density, global optimization, loop

closure, availability, and embedded implementations [15].

As demonstrated by applications like autonomous driving,

the selection of the SLAM approach is contingent upon

particular project requirements, including scalability and

accuracy [33, 56]. The SLAM algorithms that we have

chosen to showcase the best qualities of the three techniques

are listed below, arranged by publication year.

A. Visual-Only SLAM

Map points are initialized with uncertainty before being

refined by feature-based algorithms in visual-only SLAM

systems, which depend on 2D image processing to establish

a global coordinate system and rebuild maps. Although

monocular cameras are preferred due to their compact size,

low cost, and power economy, initialization, scaling, and

drift are issues that they must deal with [27]. Although they

are bigger and need more processing, stereo cameras can

address some of these problems by giving stereo depth in a

single image. Through the addition of depth information,

increased 3D mapping precision, decreased drift, and

support for strong feature matching in demanding situations,

RGB-D cameras improve SLAM. Fig. 1 displays the chosen

visual only SLAM algorithms, which are described in the

next subsections.

Journal of Computer Science and Engineering Research (JCSER) 30

Rajaa W.Ali, Heba Hakim, Mohammed A. Al-Ibadi, A Full Overview of Visual SLAM Algorithms

Fig. 3 Three examples of visual SLAM types include RGB-D SLAM, only-

visual SLAM, and visual-inertial SLAM.

• ORB-SLAM - 2014

Oriented FAST and Rotated BRIEF SLAM, or ORB-

SLAM, is a feature-based SLAM system that may be used

in both small and large interior and outdoor settings [127].

Its real-time capabilities and high-quality map

reconstruction make it a popular choice for applications

such as autonomous navigation, augmented reality, and

human-robot interaction [128]. The main features of ORB-

SLAM, which can handle both static and dynamic motion

clutter, are loop closure, mapping, and tracking [129].

In comparison to existing V-SLAM methods, ORB-

SLAM achieves real-time global localization and camera re-

localization across different views by enhancing map

dynamics, size, and traceability [130,131]. While ORB-

SLAM1 is categorized as only-visual, ORB-SLAM2 offers

both only-visual and RGB-D SLAM [132,131], while ORB-

SLAM3 adds visual-inertial SLAM, demonstrating its

adaptability and applicability across a range of applications

[133,134].

Four processes comprise the ORB-SLAM methodology:

loop closure, local mapping, tracking and sensor input, and

output preparation [135, 136]. Version-specific variations in

the tracking step—ORB-SLAM1 uses one input, ORB-

SLAM2 uses three, and ORB-SLAM3 uses four—have an

impact on how well later procedures work. New map points

and keyframes are introduced in local mapping, and ORB-

SLAM3 enhances feature matching. In versions 2 and 3, the

loop closing stage involves bundle adjustment welding and

map merging. The output, which includes the required

SLAM data and 2D/3D maps, is prepared in the last step

[136].

● ORB-SLAM2 – 2016

 ORB-SLAM2, a state-of-the-art feature-based algorithm,

builds upon ORB-SLAM [59] and operates with three

concurrent threads: tracking, local mapping, and loop

closure. The tracking thread reduces reprojection error and

locates the sensor, while the local mapping thread manages

map-related tasks [60].

The loop closure thread in ORB-SLAM2 finds new loops

and fixes drift, then adjusts the bundle for motion and

structural consistency. For RGB-D, monocular, and stereo

techniques, the algorithm employs loop closure and global

optimization. But if comparable frames are not recognized,

tracking problems may occur, and real-time operation on

embedded systems is challenging since pictures must be

processed at the same frame rate as they are obtained

[61,62]. Figure 4 shows a diagram of the threads in the

algorithm. A representation of the algorithm's threads can be

found in Fig. 4. Despite the existence of several embedded

implementations in the literature, this remains the case. The

ORB-SLAM method was executed on a CPU by Yu et al.

[63], while Abouzahir et al. [62] built the algorithm on

several CPU- and GPU-based platforms and assessed each

thread's performance on the platforms.

● CNN VSLAM - 2017

 CNN SLAM [64] integrates convolutional neural

networks with real-time SLAM by combining maps and

depth from monocular SLAM with CNN-predicted semantic

segmentation. It uses a key-frame based SLAM approach,

where visually distinct frames are refined via pose graph

optimization. The method estimates camera positions

through frame-to-key-frame transformations, with depth

prediction handling scale estimation. It also incorporates

loop closure and global optimization. Real-time execution

requires a CPU+GPU architecture, and the system's pipeline

is illustrated in Figure 5.

Fig. 4 Diagram representing the ORB-SLAM 2.0 algorithm. Adapted from

[59]

Fig. 5 Diagram representing the CNN-SLAM algorithm. Adapted from

[64].

● Direct Sparse Odometry - 2018

Journal of Computer Science and Engineering Research (JCSER) 31

Rajaa W.Ali, Heba Hakim, Mohammed A. Al-Ibadi, A Full Overview of Visual SLAM Algorithms

A direct probabilistic model and camera motion are

combined in Direct Sparse Odometry (DSO), a visual

odometry approach that optimizes all model parameters,

including geometry expressed as inverse depth. Through the

use of an inverse depth map and keyframe window, it

performs continuous optimization with local bundle

modification while evenly sampling pixels in real-time. By

adding posture and loop closure detection, Xiang et al. [67]

expanded DSO. Fig. 6 depicts the main phases of DSO.

Fig. 6 Diagram representing the DSO algorithm. Adapted from [15]

 Pose-graph optimization (DSO) and loop closure

detection (LCDSO) are extended to monocular visual

SLAM by LDSO, which prioritizes corner features in

tracking to preserve robustness in featureless regions. The

bag-of-words (BoW) approach is used to identify loop

closure possibilities, which are then confirmed by geometric

checks and relative pose constraints derived from the

combined reduction of 2D and 3D mistakes. The DSO

sliding window optimization's co-visibility graph is fused

with these limitations.

● Open-VSLAM - 2019

 Using ORB as a feature extractor and a graph-based

algorithm akin to ORB-SLAM and ProSLAM,

OpenVSLAM is a modular, monocular, stereo, and RGBD

visual SLAM system [70]. As seen in Fig. 7, the

OpenVSLAM program may be loosely categorized into

three modules: tracking, mapping, and global optimization.

The tracking module determines when to add a new

keyframe, which is then sent to the mapping and

optimization modules for additional processing, by

predicting the camera attitude using posture optimization

and keypoint matching.

By triangulating 3D points from keyframes (KFs) and

carrying out local bundle adjustment (BA), the mapping

module in OpenVSLAM enlarges the map. Pose-graph

optimization, global BA, and loop closure are handled by

the global optimization module, which uses the g2o

optimization framework to solve trajectory and scale drift,

especially for monocular camera models [71].

OpenVSLAM provides versatility by supporting map

import/export, working with a variety of camera

manufacturers and models, and having a cross-platform

online browser. Its precision is inferior to that of ORB-

SLAM3 and VINS-Fusion, and its absence of integrated

loop closure and IMU support causes drift in rapid

movements. It has poor real-time performance on low-

power devices, is less suitable for large-scale mapping, and

performs badly in dynamic or low-texture situations. It also

has little community support.

Input

frame

Keypoint
detection

Matching with
local map

KF† decision
Pose

optimization

pose-graph
optimization

KF† creation

global BA‡ local BA‡

loop detection

triangulation of
3D points

tracking
module

global
optimization

module

optimize a global map

via pose-graph optimization
and global BA

† KeyFrame
‡ Bundle Adjustment

global map local map

estimate
a camera pose
of every frame

mapping
module

create 3D points
and optimize a map
near the current KF

a whole map created so far a partial map around the current KF

Fig. 7 Main modules of Open-VSLAM: tracking, mapping, and global

optimization modules. Adapted from [71].

● ORB-SLAM3 - 2020

 A method that combines the ORB-SLAM and VIORB

[15] algorithms is the already-discussed ORB-SLAM3. The

algorithm is separated into three primary threads, just like

its predecessors: loop closure and map merging, rather than

loop closing and tracking. Third, there is local mapping.

Besides, ORB-SLAM3 [27] maintains an Atlas multi-map

representation that includes non-active maps for location

recognition and relocalization, as well as an active map

utilized by the tracking thread. Map merging is introduced

to the final thread, which adheres to the same logic as

VIORB in the first two.

Depending on where the overlapping region is, the loop

closing and map merging thread uses all of the Atlas maps

to find common areas, execute loop correction, merge maps,

and switch the active map. An additional significant feature

of ORB-SLAM3 is the suggested initialization method,

which uses the Maximum-a-Posteriori algorithm separately

for the inertial and visual estimates before optimizing them

combined. This approach applies loop closures and global

optimizations techniques and may be utilized with

monocular, stereo, and RGB-D cameras. On the other hand,

considerable mistakes in ORB-SLAM3 online performance

were shown by the authors in [72]. Although the system

performed well in [73], it was unable to analyze all of the

sequences and produced erroneous estimates for outdoor

sequences.

● LSD-SLAM - 2014

LSD-SLAM is a large-scale, real-time direct monocular

SLAM method that is intended for accurate mapping in

dynamic settings. Applications like as robots and self-

driving automobiles in complex and dynamic environments

are perfect for it since it supports a variety of camera

combinations and retains accuracy even at lower picture

resolutions [29]. The five stages of the workflow used by

LSD-SLAM and DVO-SLAM are identical and include data

input, picture alignment, loop closure, map optimization,

and global optimization. Real-time large-scale mapping is

made possible by LSD-SLAM, which combines direct and

semi-dense reconstruction approaches. To handle tracking

activities efficiently, CPU + FPGA architectures were used

in its implementation [137, 68]. But as LSD-SLAM depends

on pose-graph optimization, PTAM and ORB-SLAM

demonstrated greater accuracy in map estimation [132, 129].

The primary visual-only SLAM algorithms were covered in

this section. The key traits and evaluated standards for the

Journal of Computer Science and Engineering Research (JCSER) 32

Rajaa W.Ali, Heba Hakim, Mohammed A. Al-Ibadi, A Full Overview of Visual SLAM Algorithms

suggested visual-only SLAM algorithms are enumerated in

Table 1.

TABLE 1. MAIN ASPECTS RELATED TO THE VISUAL-ONLY SLAM

APPROACHES.

Method Type
Map

Density

Global
Optimization

Loop

Closure

Availability

LSD Direct
Semi-

dense
Yes Yes [91]

ORB-SLAM
Feature-

based
Sparse Yes Yes [92]

ORB-SLAM2
Feature-

based
Sparse Yes Yes [93]

CNN-SLAM Direct
Semi
dense

Yes Yes [94]

DSO Direct Sparse No No [95]

LDSO Direct Sparse No Yes [96]

OpenVSLAM Hybrid Sparse Yes Yes [97]

ORB-SLAM3
Feature-

based
Sparse Yes Yes [98]

B. Visual-Inertial SLAM

By combining inertial measurement units (IMUs) and

visual sensors (such as stereo cameras), VI-SLAM improves

system performance by producing a more precise and

comprehensive description of the surroundings. This hybrid

technique, which incorporates IMU data into the

environment model, improves accuracy and decreases

mistakes in real-world applications such as mobile robots

and drones. The next subsections provide explanations of

the chosen visual-inertial algorithms, whereas Fig. 3

displays a timeline of those methods.

● Robust visual inertial odometry - ROVIO – 2015

By combining optical and inertial data using

sophisticated sensor fusion, ROVIO-SLAM [101] enhances

navigation accuracy and improves interaction with the

surroundings, making it perfect for long-term, low-cost

robotic systems operating in difficult environments. To

enable reliable mapping and positioning, the procedure

consists of three steps [100]: gathering IMU and camera

data, processing for feature identification and IMU

integration, and producing estimated pose and 3D

landmarks.

Despite being effective because of its tightly-coupled

visual-inertial fusion, ROVIO lacks loop closure, which

makes it less consistent over the long term than ORB-

SLAM3 or VINS-Fusion. Lidar-based SLAMs perform

better in low-light or texture-poor situations, where it is

susceptible to visual deterioration. Furthermore, it performs

worse in large-scale mapping, which makes it better suited

for scenarios that are more closely regulated or small-scale.

● Visual Inertial ORB-SLAM – VIORB – 2017

Based on ORB-SLAM, VIORB [104] is a monocular

VI-SLAM system that integrates ORB-based front-end and

back-end operations such as graph optimization, loop

closure, and relocation. By calculating gyro bias, then fine-

tuning scale and gravity, accelerometer bias, and lastly

velocity, it accurately initializes scale, velocity, gravity

direction, and IMU biases using a special IMU initialization

technique. It joins recent keyframes via a co-visibility graph

and optimizes them using local bundle modification.

Additionally, SLAM solutions that integrate IMU with

RGB-D and stereo sensors have been investigated [105].

In the same context, monocular SLAM continuously

localizes and recovers the metric scale with great precision,

outperforming the state-of-the-art in stereo visual-inertial

odometry. For virtual and augmented reality systems, where

the expected user viewpoint must not change when the user

is in the same workspace, Ra´ el Mur-Artal and Juan D.

Tard´os [105] make this zero-drift localization more

interesting. Using stereo or RGB-D cameras should help

improve accuracy and robustness, and since scale is known,

it would also make IMU configuration easier. Relying on

the initialization of the monocular SLAM is VIORB IMU

initialization's primary flaw.

Fig. 8 Reproduced from [105], keyframe in the local map of Visual-

Inertial ORB-SLAM.

● VINS-MONO - 2018

 With just one camera and one IMU, the monocular

visual-inertial system VINS-Mono [69] generates a metric

six degrees-of-freedom (DOF) state estimate that may be

used for motion tracking and navigation. Because of its

small size and effective design, it may be used with drones,

ground robots, and mobile devices. It computes roll, pitch,

and metric scale and uses IMU data to be resistant to visual

tracking loss. In order to minimize drift and improve

accuracy, this system combines feature observations with

pre-integrated IMU data in a VIO module, together with

concurrent global pose optimization.

 VINS-Mono's main shortcomings are its reliance on

monocular vision without depth sensors, which can result in

scale estimation errors, particularly when tracking features

over long trajectories or in low-texture environments; the

system still experiences residual drift in translation and

orientation over time, even with the integration of an IMU;

and loop closure techniques, which are crucial for long-term

consistency, are not as reliable as approaches like ORB-

SLAM3, which provide more developed solutions for

relocalization and effectively reusing maps.

● Direct Sparse Visual-Inertial Odometry - VI-DSO -

2018

 In order to estimate camera locations and sparse scene

geometry concurrently, a novel technique for visual-inertial

odometry known as VI-DSO [103] minimizes both

photometric and IMU measurement errors in a combined

energy functional. Unlike key-point based methods, the

visual part of the system optimizes a sparse collection of

points in a manner similar to bundle correction, while

directly reducing a photometric mistake. This enables the

system to monitor all pixels, not just corners, with a large

enough intensity gradient. IMU data is collected across a

Journal of Computer Science and Engineering Research (JCSER) 33

Rajaa W.Ali, Heba Hakim, Mohammed A. Al-Ibadi, A Full Overview of Visual SLAM Algorithms

number of frames via measurement pre-integration, and it is

utilized as an additional constraint in the optimization

between keyframes.

 Fig. 10 provides an overview of the VI-DSO method and

outlines the main differences between it and the DSO

methodology. The VI-DSO is an extension of the DSO

algorithm that generates better accuracy and robustness than

the original DSO and other algorithms, such ROVIO [70],

by accounting for inertial information. However, because

bundle modification is dependent on the starting process, it

is slow [22]. The method does not conduct global

optimization or loop closure detection, and no embedded

implementations have been reported in the literature.

Visual-only
sfm

Visual-inertial
Alignment

Intialied

Yes
Oldest Sliding Window Newest

States from loop Closure

Camera (30hz)

IMU (100hz)

Feature Detection
and Tracking

IMU Pre-integrations

Motion BA

Propagation

Camera-rate Pose

IMU-rate Pose

Optimizations -
based VIO

Feature Retrieval

keyframe

Yes

loop
closure ?

Yes

Keyframe Database
4-DoF Pose Graph Optimization

Pose Graph Reuse
Previous Map

Measurement Preprocessing
Intialization

Local Visual-Inertial
Odometry with
relocalization

Global pose Graph optimization and reuse

Fig. 9 Block diagram illustrating the full pipeline of a monocular VINS.

Taken from [69]

Fig. 10 VI-DSO algorithm representation diagram. Adapted from [15]

● Delayed Marginalization Visual-Inertial Odometry -

DM-VIO – 2020

DM-VIO is a monocular visual-inertial odometry system

that maximizes real-time processing by using delayed

marginalization and posture graph bundle modification.

DMVIO includes IMU data into marginalization states and

allows rapid updates with dependable new linearization

points by maintaining a secondary factor graph, which

improves accuracy and reduces computing burden [102].

Sparse visual tracking and IMU data are combined with the

effective motion estimation method DM-VIO to provide

precise real-time applications such as AR and autonomous

navigation. DM-VIO avoids feature matching by

minimizing photometric error in high-gradient zones, while

maintaining precision and lowering computing burden.

Keyframes are optimized via a sliding window, which

improves camera orientation, velocity, and posture.

Nevertheless, delayed marginalization in DM-VIO enhances

state estimation, but because of slower updates and

difficulties with IMU initialization, it increases complexity

and restricts scalability in highly dynamic applications

[102].

● RD-VIO: Robust Visual-Inertial Odometry – 2021

RD-VIO, a visual-inertial odometry system developed

by Jinyu Li et al. [98], uses the IMU-PARSAC algorithm to

handle both pure rotational motions and dynamic

surroundings. By breaking up rotating frames into

subframes, this two-stage method eliminates problems with

pure rotation and enhances keypoint matching with visual

and IMU information. With improvements made to a

baseline PVIO system to better manage landmark

triangulation and modify postures in dynamic settings, Fig.

11 shows the pipeline for RD-VIO. Experiments on the

EuRoc and ADVIO datasets show that RD-VIO performs

better than baselines and works well on mobile devices,

including an AR demo of the iPhone X. Pure inertial

odometry or wireless tracking might be useful for

maintaining performance, but, as it may lose tracking under

extended difficult circumstances.

Image

IMU

Frame Tracking

IMU-PARSAC

Pre-Integration

Keypoint Tracking

Visual-Inertial
PnP

Is R-Frame ?

Yes

No

Delayed Triangulation

Frame
Management

Sliding Window
with Subframes

Keyframe
added?

No

Yes

Subframe Window BASubwindow Compression

Pose
Estimation

Re-Triangulation
Sliding

Window BA
Mariginalization

Sliding Window

Subframe Window

Measurement Processing

Fig. 11 The pipeline of RD-VIO. Adapted from [98]

● Open Keyframe-based Visual-Inertial SLAM with

Loop Closure OKVIS2 – 2022

In robotics, augmented reality, and virtual reality

(AR/VR), robust and accurate state estimation is still a

hurdle, despite the increasing commodity nature of Visual-

Inertial Simultaneous Localization and Mapping (VI-

SLAM). a comprehensive VI-SLAM solution that addresses

problems with long and repeated loop closures in particular.

OKVIS2 is a real-time, multi-camera VI-SLAM system

with loop closure and location identification capabilities. a

multi-camera VI-SLAM system that uses visual reprojection

errors, IMU preintegrated error terms, and the

marginalization of common observations to generate a

factor graph.

A real-time estimator minimizes these in a bounded-size

window of recent pose-graph and keyframe frames. Once

the loop is closed, it is easy to turn the old pose-graph edges

back into landmarks and reprojection errors. Longer loops

can also be optimized asynchronously while keeping all

states around the loop as components of the optimized

variables by reusing the same factor-graph [99]. The VI

SLAM system is composed of a frontend and a realtime

estimator that process images and IMU messages

concurrently whenever a new (multi-)frame is received. To

handle loop closures, an asynchronous entire factor graph

loop optimization is performed. As shown in Figure 12, the

frontend manages a number of tasks, including place

recognition, segmentation CNN running, keypoint

matching, state initialization, stereo triangulation (from

Journal of Computer Science and Engineering Research (JCSER) 34

Rajaa W.Ali, Heba Hakim, Mohammed A. Al-Ibadi, A Full Overview of Visual SLAM Algorithms

consecutive frames and from stereo images of the same

multi-frame), and, if the latter was successful, re-

localization and loop closure initialization. The real-time

estimator is then responsible for fixating prior states and

constructing pose graph edges by marginalizing old data,

and it will optimize the relevant factor graph. Following

loop closure, it begins optimizing the complete factor graph

and proceeds to turn the edges of the pose graph back into

observations. After this asynchronous operation is complete,

it synchronizes with the realtime factor graph.

Despite being useful for real-time visual-inertial SLAM,

OKVIS2 has issues with accuracy maintenance in dynamic

situations and computational overhead brought on by

synchronous processing needs. Furthermore, delays may be

introduced by its reliance on asynchronous loop

optimization, which might compromise localization

consistency in practical situations.

Images

Images

IMU readings
between frames

Frontend
- new state initialisation

- keypoint matching
- motion stereo landmark triangul.

- stereo landmark triangulation
- seg. CNN & observation removal

- place recognition
- re-localisation & loop closure init.

Realtime estimator
- factor graph optimisation

- posegraph construction
- fixation of old states

- reviving observations

Full graph estimator
- fixation to start of loop
- async. optimisation

Synchronise factor graphs

after async. optimisation

Legend Legend
- steps executed at every frame
- steps executed if keyframe
- steps executed upon loop closure

Fig. 12 Overview of OKVIS2 Adapted from [99]

In this part, every one of the seven main visual-inertial

SLAM algorithms were independently examined. Table 2

provides an overview of the key characteristics and

evaluation standards for the shown visual-inertial SLAM

algorithms.

TABLE 2: KEY ELEMENTS OF THE VISUAL-INERTIAL SLAM

TEQNIQUES. EVERY STRATGY SHOWS ACLOSLY INTEGRATED

SENSORY FUSION.

Method Type Map Density
Global

Optimization
Loop Closure Availability

ROVIO Filtering-based Sparse No No [106]

VIORB Optimization-based Sparse Yes Yes _

VINS-MONO Optimization-based Sparse Yes Yes [107]

VI-DSO Optimization-based Sparse No No [108]

DM-VIO Direct Sparse No No [109]

RD-VIO Hybrid Sparse No Yes [110]

OKVIS2 Keyframe-based Sparse Yes Yes _

ORB-SLAM3 Feature-based Sparse Yes Yes [98] R

C. GB-D SLAM

 The innovative RGB-D technique integrates depth

sensors and RGB-D cameras to estimate and build

environmental models. This approach has found

applications in several domains, including robotic

perception and navigation. It performs well and provides

useful information on the spatial surroundings, particularly

in inside settings with good lighting. The system can

concurrently record color and depth data since RGB-D

cameras and depth sensors are coupled. Due to its ability to

resolve dense reconstruction on low-textured surface

regions, this capability is particularly useful for interior

applications. The goal of RGB-D SLAM is to produce a

precise three-dimensional reconstruction of the system's

surrounding environment, with a focus on gathering

geometric data to create a comprehensive three-dimensional

model. A summary of the methods applied in this section is

provided below:

● RGBDSLAMv2 – 2014

ORB-SLAM2, a complete SLAM solution for

monocular, stereo, and RGB-D cameras, has capabilities

including map reuse, loop closure, and relocalization. The

system runs in a variety of settings in real-time on standard

CPUs, from small hand-held interior sequences to drones

flying in industrial areas and cars driving around a city.

RGBDSLAMv2, one of the most used RGB-D based

algorithms, is built on feature extraction [115]. It estimates

posture using the ICP approach and estimates the

transformation between the matched features using the

RANSAC algorithm. To remove the accumulated error, the

system then performs a global optimization and loop

closure. This method also proposes to use an environment

measurement model (EMM) to validate the transformations

obtained between the frames. The method's real-time

performance is hampered since it depends on SIFT features.

RGBDSLAMv2 requires slow sensor movement to work

well and has a high processing cost. In Fig. 13, the

algorithm is displayed.

Input Depth

Input Frame

Point Cloud
Using Storage and

Subsampling

Features
Extraction and

Matching

Transformation
Estimation

Tranformation
Validation

Tranfor
mations

Map
Creation

Optimi
zations

Trajecto
ry

Input Data

Fig. 13 A schematic illustration of the RGBDSLAMv2 algorithm. Taken
from [15].

● Elastic Fusion – 2015

Using an incremental online method and an RGB-D

camera, the Elastic Fusion system can capture rich, globally

consistent surfel-based maps of room scale settings without

the need for pose graph optimization or other postprocessing

procedures. This is accomplished by using dense frame-to-

model camera tracking, windowed surfel-based fusion, and

frequent model refinement using non-rigid surface

distortions. Using RGB-D sensors, ElasticFusion is a real-

time dense visual SLAM technique that is intended for drift-

free 3D reconstruction. By integrating photometric

alignment with RGB data and frame-to-model tracking with

the ICP method, it approximates the camera posture. To

accomplish surface fusion, a truncated signed distance

function (TSDF) is used to integrate color and depth data

into a global model. One important aspect is the use of a

non-rigid deformation graph, which modifies previously

mapped regions to enable drift correction and real-time loop

closure. The method employs optimization to constantly

improve the global model, guaranteeing a reliable and

Journal of Computer Science and Engineering Research (JCSER) 35

Rajaa W.Ali, Heba Hakim, Mohammed A. Al-Ibadi, A Full Overview of Visual SLAM Algorithms

precise 3D reconstruction. Elastic Fusion suffers in settings

with poor texture or fast movement, since tracking becomes

erratic. Since memory usage rises sharply in large-scale

settings, the method's reliance on a surfel-based approach

further restricts its scalability. Furthermore, in crowded or

changing landscapes, ElasticFusion's absence of an

integrated method for addressing dynamic objects may

cause drift or inaccuracy during tracking.

● ORB-SLAM2 - 2017

ORB-SLAM2 is a complete SLAM solution for

monocular, stereo, and RGB-D cameras that includes loop

closure, relocalization, and map reuse. In a variety of

scenarios, such as cars driving through a city, small hand-

held interior sequences, and drones flying in industrial

environments, the system runs in real-time on standard

CPUs. The suggestion by Strasdat et al. [116] states that

ORB-SLAM2 uses depth information to generate a stereo

coordinate for the recovered components of the picture. In

this regard, whether the input is RGB-D or stereo is

irrelevant to the system. Unlike all the previous methods,

the back-end uses bundle adjustment to generate a globally

consistent sparse reconstruction. Because of this, the ORB-

SLAM2 method is easy to use and works with standard

CPUs. Long-term and globally consistent localization is the

goal, not the most complex dense reconstruction.

Alternatively, one might fuse depth maps to produce correct

reconstruction on-the-fly in a small region, or one could

post-process the depth maps from each keyframe after a full

BA to create a perfect 3D model of the whole scene utilizing

the incredibly precise keyframe poses.

Fig. 14 shows the overall architecture of the system. The

system runs three main parallel threads: Localizing the

camera entails the following three steps: Three methods are

used in tracking: 1) motion-only BA is used to find feature

matches on the local map; 2) local mapping is used to

manage and optimize the local map; and 3) loop closing is

used to find large loops and correct accumulated drift by

executing a pose-graph optimization. This thread initiates a

fourth thread to finish full BA after the pose-graph

optimization.

Fig. 14: Three primary parallel threads make up ORBSLAM2: loop closure

, local mapping, and tracking. Adapted from [117].

● RTAB-Map – 2018

The RTAB-Map A visual SLAM technique that can be

applied to RGB-D and stereo cameras is called real-time

appearance-based mapping, or SLAM for short. It's a

versatile technique that can handle 2D and 3D mapping

tasks based on the sensor and available data. It allows the

identification of both stationary and moving 3D objects in

the robot's environment through the combination of RGB-D

and stereo data for 3D mapping. When LiDAR rays are not

able to control the field around the robot, it can be applied in

large outdoor environments. Robotic localization and

mapping errors can be caused by varying light and

environmental interactions. Thus, RTAB's adaptability and

resistance to changing light and scenery enable precision

operation under challenging conditions. It can easily adjust

to function with many cameras or laser rangefinders, and it

can manage complex, large-scale scenarios. Moreover, the

use of T265 (Intel RealSense Camera) and ultra-wideband

(UWB) addresses robot wheel slippage with drifting error

control, enhancing system efficiency through precise

tracking and the generation of 3D point clouds. The RTAB-

MAP SLAM approach involves several procedures in order

for it to function. First, tasks including frame creation,

sensor integration, and data extraction from RGB-D and

stereo cameras are handled by the hardware and front-end

stage. At this point, the frames required for the following

phase are prepared. The loop closure provides the necessary

odometry when the tracking operation and frame processing

are finished simultaneously.

Fig. 15 depicts RTAB-Map, the main ROS node. Any

kind of odometry may be used for SLAM as it is an external

input to RTAB-Map; the choice will rely on what works

best for the robot and the application. A graph consisting of

nodes and links makes up the structure of the map. Once the

sensors are synchronized, the Short-Term Memory (STM)

module creates a node and memorizes the raw sensor data,

the odometry posture, and additional information that will

be needed for later modules (like visual words for Loop

Closure and Proximity Detection and local occupancy grid

for Global Map Assembling). The

"Rtabmap/DetectionRate," which is given in milliseconds, is

the determined rate at which nodes are constructed based on

how much the data generated by them should overlap each

other.

RTAB-Map high computational demand is a major

disadvantage that can cause performance issues on devices

with limited capabilities, particularly when working with

big maps and loop closure detection. Additionally, drift or

tracking failures may result from odometry's accuracy

declining in settings with little feature variety. Because of

its reliance on RGB-D sensors, its application is therefore

limited to specific settings, such indoors, where depth data

is more trustworthy.

● Bundle Adjusted Direct RGB-D SLAM BAD-SLAM

– 2019

Simultaneous Localization and Mapping (SLAM)

systems rely on the joint optimization of the camera

trajectory and the expected 3D map. Bundle adjustment

(BA) is the industry standard for this. rapid direct BA

formulation, which they employ in a real-time, dense RGB-

D SLAM system. As is common with SLAM algorithms,

the technique consists of both front-end and back-end

components (Figure 16). The frontend tracks the RGB-D

camera's motions in real time. It provides first estimates for

camera angles and scene dimensions as a result. At a lower

frequency, the back-end then fine-tunes the geometry and

Journal of Computer Science and Engineering Research (JCSER) 36

Rajaa W.Ali, Heba Hakim, Mohammed A. Al-Ibadi, A Full Overview of Visual SLAM Algorithms

the camera trajectory to produce a consistent 3D map. A

novel back-end Bundle Adjustment (BA) method for direct

RGB-D SLAM is the primary technological contribution.

Sensitivity to sensor calibration and synchronization is a

major limitation of BAD-SLAM. Performance can be

severely harmed by problems like rolling shutter effects or

mismatched depth and RGB data because the system mainly

depends on accurate direct measurements from RGB-D

cameras. Due to its reliance on extremely precise sensors,

BAD-SLAM is less reliable in settings where these

requirements are not satisfied or sensor configurations are

not ideal.

Fig. 15 RTAB-Map, the main ROS node.

Fig. 16 BAD-SLAM overview. KF stands for keyframe.

● SCE-SLAM - 2023

Spatial coordinate errors SLAM (SCE-SLAM) is a new

real-time semantic RGB-D SLAM technique. The purpose

of its creation was to overcome the shortcomings of

traditional SLAM systems in dynamic operational

environments. Combining semantic and geometric data,

together with using YOLOv7 for quick object recognition,

improved the technique to outperform existing V-SLAM

systems, including ORB-SLAM3, and to be more accurate

and robust in dynamic circumstances. These improvements

make it possible for the SLAM algorithms to be very

effective in dynamic applications, which leads to greater

adaptability and comprehension of the system environment.

Robotic systems can therefore operate in more complex

contexts with reduced slippage or mistakes. Robots

equipped with SCE-SLAM may also operate more

adaptably and with fewer errors, even under challenging

lighting situations.

SCE-SLAM has the potential to severely impair the

produced maps' accuracy and dependability. Misalignments

and distortions in the spatial representation of the

environment result from these mistakes, which are caused

by inaccurate sensor readings and posture estimation.

Reduced navigation performance as a result of SCE-SLAM

can make it difficult for autonomous systems to function

well in complex and dynamic surroundings.

Three main processes make up the SCE-SLAM method,

according to Son et al. (2023). A semantic module is used in

the initial stage. As the camera input data is handled, noise

is removed using Yolov2 in this module. During the second

step, the geometry module analyzes depth pictures and

recovers spatial coordinates to prepare the system for

integration with ORB SLAM3. The final stage is dedicated

to ORB SLAM3 implementation. This link makes the ORB-

SLAM3 procedures easier to execute. The procedure

working in combination with the loop closure technique

produces a system output that is more precise and accurate.

Section C provided a distinct description of the most

typical RGB-D-based methods. Table 3 lists the key

characteristics and parameters for critical assessment of the

given algorithms.

TABLE 3. KEY FEATURES OF RGB-D BASED SLAM TECHNIQUES.

Method Type Map Density
Loop
Closure

 Availability

RGBDSLAMv2
Feature-

based
Dense No [123]

Elastic Fusion Direct Dense Yes [124]

ORB-SLAM2
Feature-

based
Dense Yes [92]

RTAB-Map Hybrid Dense/Sparse Yes [125]

BAD-SLAM Direct Dense Yes [126]

SCE-SLAM Hybrid Sparse Yes ?

ORB-SLAM3
Feature-

based
Sparse Yes [98]

IV. DATASETS AND BENCHMARKING

A fair comparison of all the SLAM algorithms in the

literature is necessary to identify which one performs better

in particular scenarios. The literature suggests a number of

benchmarking datasets with various features to investigate

the resilience and capabilities of SLAM. The benchmark

dataset that was used to assess the SLAM algorithms that

were described in the original publications is made

publically available here.

● The KITTI dataset, which was created by the

Toyota Technological Institute and the Karlsruhe

Institute of Technology, includes eight LiDAR data

sequences and twenty-two stereo camera sequences

that were all taken from actual driving situations. It

offers timestamps for synchronization, a range of

view of around 60° horizontally for the stereo

camera system, and ground truth data for vehicle

trajectories and sensor calibration files [75].

● The Technical University of Munich's TUM RGB-

D dataset offers 39 indoor RGB-D camera video

sequences that document a range of scenarios with

precise timestamp information and ground truth

camera postures. A calibration file that describes the

camera system's intrinsic and extrinsic

characteristics is included in the dataset. The camera

system's field of view is around 60° horizontally and

50° vertically [28]. Furthermore, relative pose error

and absolute trajectory error are the two metrics that

the authors suggest be used to assess the trajectory's

local correctness and global consistency,

respectively.

Journal of Computer Science and Engineering Research (JCSER) 37

Rajaa W.Ali, Heba Hakim, Mohammed A. Al-Ibadi, A Full Overview of Visual SLAM Algorithms

● Eleven sequences of high-resolution pictures and

IMU data, together with ground truth trajectories,

calibration files, and timestamps, were gathered

using micro aerial vehicles and are included in the

Euroc MAV collection. The camera's diagonal field

of view is around 90° [77].

● The TUM VI collection includes 25 sequences of

synchronized RGB and IMU data that span a 60°

horizontal field of view and include comprehensive

ground truth poses and calibration files. To

guarantee exact temporal alignment, timestamps are

supplied for every frame [78].

● The TUM MONO VO dataset provides 50

monocular video sequences with calibration

information and ground truth postures. Each frame

has a timestamp and a horizontal field of view of

around 60° [79]. A strong framework for creating

and evaluating motion and visual estimating

algorithms in a variety of circumstances is offered

by these datasets taken together.

● Specifically created for RGB-D SLAM, the Bonn

RGB-D dynamic dataset comprises dynamic object

sequences. Following the same style as TUM RGB-

D datasets, it displays RGB-D data together with a

3D point cloud that depicts the changing

environment. It goes beyond the confines of

regulated spaces and encompasses both indoor and

outdoor situations. When creating and assessing

algorithms for tasks like object identification, scene

comprehension, and robot navigation, it is useful.

The fact that this dataset is adaptable enough to

handle the complexity of applications utilized in

light-challenging fields is noteworthy. Furthermore,

it serves as a valuable tool for assessing V-SLAM

methods in noisy and dynamic environments where

the robot may encounter difficulties interacting with

its surroundings and detecting objects.

● There are twelve artificial interior sequences

available in the ICL-NUIM dataset, each having

RGB-D pictures and simulation-generated ground

truth trajectories. With a horizontal field of view of

around 70°, it gives timestamps and calibration

information for every frame [76]. The dataset,

which focuses on RGB-D techniques, offers

information for assessing the 3D reconstruction

using eight artificially created interior settings. The

ground truth is a 3D surface model and the

calculated trajectory using a SLAM algorithm,

while the sequences are generated by a handheld

RGB-D camera [80].

● An autonomous driving dataset called Cityscapes

[87] focuses on instance annotation and pixel-level

picture segmentation. Additionally, other datasets—

such as NYU RGB-D [37], MS COCO [38], and

others—are employed in a variety of settings. With

an emphasis on semantic comprehension of urban

surroundings, the Cityscapes collection offers high-

resolution urban street scenes gathered from 50

locations. With pixel-level labels for semantic

segmentation tasks, it provides 20,000 coarsely

labeled photos and 5,000 highly annotated images.

30 classes—human, car, flat surface, and other

urban elements—are included in the collection. The

photos were taken at a resolution of 2048x1024

pixels in a range of weather and lighting

circumstances. The pictures have a broad field of

vision, which is common for driving situations at

street level.

● Another benchmarking dataset for assessing SLAM

systems in difficult situations is Tartan Air [111].

A variety of weather patterns, moving objects, and

changing light are all included in the incredibly

lifelike simulated situations used to collect the data.

By collecting data in simulations, we are able to

give multi-modal sensor data and precise ground

truth labels, such as segmentation, optical flow,

camera positions, stereo RGB image, and LiDAR

point cloud.

● Nguyen et al. [112] published the NTU VIRAL

dataset, which was collected using an unmanned

aerial vehicle (UAV) equipped with a 3DLiDAR,

cameras, IMUs, and several Ultra-widebands

(UWBs). The information is meant to be used for

assessing the performance of aerial operations and

autonomous driving. Both indoor and outdoor cases

are included.

Table 4 summarizes the main benchmark datasets

characteristics presented in this work.

TABLE 4 MAIN ASPECTS RELATED TO THE PRESENTED

BENCHMARK DATASETS.

Dataset Year Environment.* Platform Sensor System Groundtruth Availability

TUM RGB-D 2012 Indoor Robot/Handheld RGB-D camera Motion capture [81]

KITTI 2013 Outdoor Car
Stereo-cameras

3D laser scanner
INS/GPS [82]

ICL-NUIM 2014 Indoor Handheld RGB-D camera
3D surface model

SLAM estimation
[83]

Bonn RGB-D

dynamic
2016 Indoor/Outdoor Handheld RGB-D camera

Motion capture

(partially)
[90]

Cityscapes 2016 Outdoor Car Stereo GPS [87]

EuRoC 2016 Indoor MAV Stereo-cameras IMU
Total Station Motion

capture
 [84]

TUM Mono VO 2016 Indoor-Outdoor Handheld Non-stereo cameras _ [85]

TUM VI 2018 Indoor-Outdoor Handheld Stereo-camera IMU
Motion capture

(partially)
[86]

TartanAir 2020 Indoor-Outdoor

photo-realistic

simulation

environments

RGB cameras, depth

sensors, IMU, LIDAR
GPS [114]

NTU VIRAL 2021 Indoor-Outdoor UAV

3D lidars, IMUs, time-

synchronized

cameras, UWBs

GPS [113]

*Environment: indoor or outdoor.

V. GUIDELINES FOR EVALUATING AND

SELECTING VISUAL SLAM METHODS

There are a few things to take into account while

selecting a visual SLAM technique. Importantly, the type of

sensor used is important: monocular SLAM is less

expensive but has scale ambiguity, whereas stereo and

RGB-D SLAM provide more accurate depth estimates at a

greater computational cost [39]. Applications that need

minimal latency must have real-time performance, and GPU

acceleration helps techniques like Elastic Fusion [118]. The

SLAM system must also be able to adjust to its

surroundings; indoor-focused algorithms such as Kinect

Fusion perform well in controlled settings but may not be as

successful outside [119]. Long-term accuracy is ensured by

the system's capacity to manage drift and implement loop

Journal of Computer Science and Engineering Research (JCSER) 38

Rajaa W.Ali, Heba Hakim, Mohammed A. Al-Ibadi, A Full Overview of Visual SLAM Algorithms

closure methods, as demonstrated by ElasticFusion and

ORB-SLAM. Particularly for projects requiring in-depth 3D

mapping [36], posture estimation accuracy and map

precision should be taken into account. Certain methods are

more appropriate for particular situations [120], but SLAM

systems should be resilient to external obstacles like

occlusions or moving objects. In conclusion, scalability,

global optimization, and the accessibility of open-source

implementations must be taken into account for long-term

development and use [121,122].

VI. CONCLUSIONS

The difficulties and advancements in the field of visual-

based SLAM (VSLAM) approaches are highlighted in this

study's methodical investigation. Historically, multiple-view

geometry and low-level feature matching have been the

mainstays of VSLAM systems. There includes discussion of

difficulties like recreating low-texture areas and the

computational expenses of deep learning techniques, as well

as the requirement for extra sensors (such IMUs or stereo

cameras) or system previous knowledge. The following six

criteria are suggested for choosing SLAM algorithms:

availability, global optimization methods, map density,

algorithm type, and embedded implementations. The

research places a strong emphasis on assessing algorithms

according to requirements unique to each application,

including scalability, sensor compatibility, and

environmental restrictions. The report also proposes future

research directions and discusses benchmarking datasets for

SLAM algorithm evaluation. An ideal SLAM system that

balances real-time performance, precision, and robustness

may be selected for a variety of applications by taking these

criteria into account.

ACKNOWLEDGMENT

The authors are grateful for the financial support towards

this research by the Computer Engineering Department,

College of Engineering, Basrah University. Postgraduate

Research Grant (PGRG) /2023/HIR/RAJA/ENG/39 (1751-

7-3).

REFERENCES

[1] Smith, R.; Cheeseman, P. On the Representation and Estimation
of Spatial Uncertainty. Int. J.Robot. Res. 1987, 5, 56–68.

[2] Bailey, T.; Durrant-Whyte, H. Simultaneous localization and

mapping (SLAM): Part II. IEEE Robot. Autom. Mag. 2006, 13,
108–117.

[3] Dissanayake, M.W.M.G.; Newman, P.; Clark, S.; Durrant-

Whyte, H.F.; Csorba, M.A. Solution to the simultaneous

localization and map building (SLAM) problem. IEEE Trans.
Robot. Autom. 2001, 17, 229–241.

[4] Hess, W.; Kohler, D.; Rapp, H.; Andor, D. Real-time loop
closure in 2D LIDAR SLAM. In Proceedings of the IEEE

International Conference on Robotics and Automation,
Stockholm, Sweden, 16–21 May 2016; pp. 1271–1278.

[5] Fuentes-Pacheco, J.; Ruiz-Ascencio, J.; Rendón-Mancha, J.M.

Visual simultaneous localization and mapping: Asurvey. Artif.
Intell. Rev. (2015). 43, 55–81.

[6] Ido, J.; Shimizu, Y.; Matsumoto, Y.; Ogasawara, T. Indoor

Navigation for a Humanoid Robot Using a View Sequence. Int.
J. Robot. Res. (2009). 28, 315–325.

[7] Celik, K.; Chung, S.J.; Clausman, M.; Somani, A.K. Monocular

vision SLAM for indoor aerial vehicles. In Proceedings of the

2009 IEEE/RSJ International Conference on Intelligent Robots

and Systems (ICRA), St. Louis, MO, USA, 11–15 October
2009; pp. 1566–1573.

[8] Civera J., Lee S.H. (2019) RGB-D Odometry and SLAM. In:

Rosin P., Lai YK., Shao L., Liu Y. (eds) RGB-D Image
Analysis and Processing. Advances in Computer Vision and
Pattern Recognition. Springer, Cham

[9] G. Grisetti, R. Kümmerle, C. Stachniss and W. Burgard, "A
Tutorial on Graph-Based SLAM," in IEEE Intelligent

Transportation Systems Magazine, vol. 2, no. 4, pp. 31-43,
winter 2010, doi: 10.1109/MITS.2010.939925.

[10] Taketomi, T., Uchiyama, H. & Ikeda, S. Visual SLAM

algorithms: a survey from 2010 to 2016. IPSJ T Comput Vis
Appl 9, 16 (2017). https://doi.org/10.1186/s41074-017-0027-2

[11] Kabzan, J.; Valls, M.; Reijgwart, V.; Hendrikx, H.; Ehmke, C.;

Prajapat, M.; Bühler, A.; Gosala, N.; Gupta, M.; Sivanesan, R.;
et al. AMZDriverless: The Full Autonomous Racing System. J.
Field Robot. (2020), 37, 1267–1294.

[12] T. Bailey and H. Durrant-Whyte, "Simultaneous localization

and mapping (SLAM): part II," in IEEE Robotics & Automation

Magazine, vol. 13, no. 3, pp. 108-117, Sept. 2006, doi:
10.1109/MRA.2006.1678144.

[13] Taheri, H., & Xia, Z. C. (2021). SLAM; definition and
evolution. Engineering Applications of Artificial Intelligence,
97, 104032. https://doi.org/10.1016/j.engappai.2020.104032

[14] Al-Tawil B, Hempel T, Abdelrahman A and Al-Hamadi A
(2024), A review of visual SLAM for robotics: evolution,

properties, and future applications. Front. Robot. AI
11:1347985. doi: 10.3389/frobt.2024.1347985

[15] Macario Barros, A.; Michel, M.; Moline, Y.; Corre, G.; Carrel,

F. A Comprehensive Survey of Visual SLAM Algorithms.
Robotics 2022, 11, 24.
https://doi.org/10.3390/robotics11010024

[16] Chen C, Zhu H, Li M, You S. A Review of Visual-Inertial
Simultaneous Localization and Mapping from Filtering-Based

and Optimization-Based Perspectives. Robotics. 2018; 7(3):45.
https://doi.org/10.3390/robotics7030045

[17] Zhang, S., Zheng, L., & Tao, W. (2021). Survey and Evaluation

of RGB-D SLAM. IEEE Access, 9, 21367–21387.
https://doi.org/10.1109/access.2021.3053188

[18] Munguia-Silva R, Mart′ınez-Carranza J. Autonomous flight

using rgb-d slam with a monocular onboard camera only. In:
2018 international conference on electronics, communications
and computers (CONIELECOMP). IEEE; 2018. p. 200–6.

[19] Li Y, Lang S. A stereo-based visual-inertial odometry for slam.

In: 2019 Chinese automation congress (CAC). IEEE; 2019. p.
594–8.

[20] Wang S, Yue J, Dong Y, Shen R, Zhang X. Real-time

omnidirectional visual slam with semi-dense mapping. In: 2018
IEEE intelligent vehicles symposium (IV). IEEE; 2018. p. 695–
700.

[21] Jo H, Jo S, Cho HM, Kim E. Efficient 3d mapping with rgb-d
camera based on distance dependent update. In: 2016 16th

international conference on control, automation and systems
(ICCAS). IEEE; 2016. 720 873–875.

[22] Covolan, J.P.; Sementille, A.; Sanches, S. A mapping of visual

SLAM algorithms and their applications in augmented reality.
In Proceedings of the 2020 22nd Symposium on Virtual and

Augmented Reality (SVR), Porto de Galinhas, Brazil, 7–10
November 2020.

[23] Taketomi, T.; Uchiyama, H.; Ikeda, S. Visual SLAM

algorithms: A survey from 2010 to 2016. IPSJ Trans. Comput.
Vis. Appl. 2017, 9, 1–11.

[24] Servieres, M., Renaudin, V., Dupuis, A., & Antigny, N. (2021).

Visual and Visual-Inertial SLAM: State of the Art,
Classification, and Experimental Benchmarking. Journal of
Sensors, 2021, 1–26. https://doi.org/10.1155/2021/2054828

[25] Klette R, Koschan A, Schluns K (1998) Computer vision: three-
dimensional data from images. 1st edn

[26] Nister D (2004) A minimal solution to the generalised 3-point
pose problem. In: Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition Vol. 1. pp 560–5671

https://doi.org/10.1186/s41074-017-0027-2
https://doi.org/10.1016/j.engappai.2020.104032
https://doi.org/10.3390/robotics11010024
https://doi.org/10.3390/robotics7030045
https://doi.org/10.1109/access.2021.3053188
https://doi.org/10.1155/2021/2054828

Journal of Computer Science and Engineering Research (JCSER) 39

Rajaa W.Ali, Heba Hakim, Mohammed A. Al-Ibadi, A Full Overview of Visual SLAM Algorithms

[27] Campos, C.; Elvira, R.; Rodríguez, J.J.G.; M. Montiel, J.M.; D.

Tardós, J. ORB-SLAM3: An Accurate Open-Source Library for

Visual, Visual–Inertial, and Multimap SLAM. IEEE Trans.

Robot. 2021, 37, 1874–1890.

[28] Burri, M.; Nikolic, J.; Gohl, P.; Schneider, T.; Rehder, J.;
Omari, S.; Achtelik, M.; Siegwart, R. The EuRoC micro aerial
vehicledatasets. Int. J. Robot. Res. 2016, 35, 1157–1163.

[29] Engel, J.; Schöps, T.; Cremers, D. LSD-SLAM: Large-Scale
Direct Monocular SLAM. In Computer Vision–ECCV 2014;

Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer

International Publishing: Cham, Switzerland, 2014; pp. 834–
849.

[30] Bianco, S.; Ciocca, G.; Marelli, D. Evaluating the Performance
of Structure from Motion Pipelines. J. Imaging 2018, 4, 98.

[31] Hempel, T., and Al-Hamadi, A. (2020). Pixel-wise motion

segmentation for slam in dynamic environments. IEEE Access
8, 164521–164528. doi:10.1109/access.2020.3022506

[32] Liu, Y., and Miura, J. (2021). Rds-slam: real-time dynamic slam
using semantic segmentation methods. Ieee Access 9, 23772–
23785. doi:10.1109/access.2021.3050617

[33] Wang, Z., Pang, B., Song, Y., Yuan, X., Xu, Q., and Li, Y.

(2023). Robust visual-inertial odometry based on a kalman filter

and factor graph. IEEE Trans. Intelligent Transp. Syst. 24,
7048–7060. doi:10.1109/tits.2023.3258526

[34] Grisetti, G., Stachniss, C., and Burgard, W. (2007). Improved

techniques for grid mapping with rao-black wellized particle
filters. IEEE Trans. Robotics 23, 34–46.
doi:10.1109/tro.2006.889486

[35] Beghdadi, A., and Mallem, M. (2022). A comprehensive

overview of dynamic visual slam and deep learning: concepts,

methods and challenges. Mach. Vis. Appl. 33, 54.
doi:10.1007/s00138-022-01306-w

[36] Mur-Artal, R., & Tardós, J. D. (2017). ORB-SLAM2: An Open-

Source SLAM System for Monocular, Stereo, and RGB-D
Cameras. IEEE Transactions on Robotics, 33(5), 1255-1262

[37] Dellaert, F., & Kaess, M. (2006). Fast, Incremental, Consistent
Stereo SLAM. Proceedings of Robotics: Science and Systems

[38] Scaradozzi, D., Zingaretti, S., and Ferrari, A. (2018).

Simultaneous localization and mapping (slam) robotics
techniques: a possible application in surgery. Shanghai Chest 2,

5. doi:10.21037/shc.2018.01.01

[39] Mur-Artal, R., Montiel, J.M.M., & Tardós, J.D. (2015). ORB-

SLAM: A Versatile and Accurate Monocular SLAM System.

IEEE Transactions on Robotics, 31(5), 1147-1163. DOI:
10.1109/TRO.2015.2463671.

[40] Engel, J., Schöps, T., & Cremers, D. (2014). LSD-SLAM:

Large-Scale Direct Monocular SLAM. European Conference on
Computer Vision (ECCV), 834-849. DOI: 10.1007/978-3-319-
10605-2_54.

[41] Strasdat, H., Montiel, J.M.M., & Davison, A.J. (2012). Visual

SLAM: Why Filter? Image and Vision Computing, 30(2), 65-
77. DOI: 10.1016/j.imavis.2012.02.002.

[42] Picard, Q., Chevobbe, S., Darouich, M., and Didier, J.-Y.

(2023). A survey on real time 3d scene reconstruction with slam
methods in embedded systems. arXiv preprint
arXiv:2309.05349.

[43] Taheri, H., and Xia, Z. C. (2021). Slam; definition and
evolution. Eng. Appl. Artif. Intell. 97, 104032.
doi:10.1016/j.engappai.2020.104032.

[44] Fernández-Moral, E., Jiménez, J. G., and Arévalo, V. (2013).

Creating metric topological maps for large-scale monocular
slam. ICINCO (2), 39–47.

[45] Grisetti, G., Stachniss, C., and Burgard, W. (2007). Improved

techniques for grid mapping with rao-blackwellized particle

filters. IEEE Trans. Robotics 23, 34–46.
doi:10.1109/tro.2006.889486.

[46] Li, Q., Wang, X., Wu, T., and Yang, H. (2022a). Point-line
feature fusion based field real-time rgb-d slam. Comput. Graph.
107, 10–19. doi:10.1016/j.cag.2022.06.013.

[47] Chu, P. M., Sung, Y., and Cho, K. (2018). Generative
adversarial network-based method for transforming single rgb

image into 3d point cloud. IEEE Access 7, 1021–1029.
doi:10.1109/access.2018.2886213

[48] Schneider, T., Dymczyk, M., Fehr, M., Egger, K., Lynen, S.,

Gilitschenski, I., et al. (2018). maplab: an open framework for

research in visual-inertial mapping and localization. IEEE
Robotics Automation Lett. 3, 1418–1425.
doi:10.1109/lra.2018.2800113

[49] Chen, H., Yang, Z., Zhao, X., Weng, G., Wan, H., Luo, J., et al.
(2020). Advanced mapping robot and high-resolution dataset.

Robotics Aut. Syst. 131, 103559.
doi:10.1016/j.robot.2020.103559.

[50] Acosta-Amaya, G. A., Cadavid-Jimenez, J. M., and Jimenez-

Builes, J. A. (2023). Three-dimensional location and mapping
analysis in mobile robotics based on visual slam methods. J.
Robotics 2023, 1–15. doi:10.1155/2023/6630038

[51] Bustos, A. P., Chin, T.-J., Eriksson, A., and Reid, I. (2019).
“Visual slam: why bundle adjust?,” in 2019 international

conference on robotics and automation (ICRA) (IEEE), 2385–
2391.

[52] Eudes, A., Lhuillier, M., Naudet-Collette, S., and Dhome, M.

(2010). “Fast odometry integration in local bundle adjustment-
based visual slam,” in 2010 20th International Conference on

Pattern Recognition (IEEE), 290–293.

[53] Al-Tawil B, Hempel T, Abdelrahman A and Al-Hamadi A

(2024), A review of visual SLAM for robotics: evolution,

properties, and future applications. Front. Robot. AI
11:1347985. doi: 10.3389/frobt.2024.1347985

[54] Khoyani, A., and Amini, M. (2023). A survey on visual slam

algorithms compatible for 3d space reconstruction and
navigation, 01–06.

[55] Acosta-Amaya, G. A., Cadavid-Jimenez, J. M., and Jimenez-
Builes, J. A. (2023). Three-dimensional location and mapping

analysis in mobile robotics based on visual slam methods. J.
Robotics 2023, 1–15. doi:10.1155/2023/6630038

[56] Duan, C., Junginger, S., Huang, J., Jin, K., and Thurow, K.

(2019). Deep learning for visual slam in transportation robotics:

a review. Transp. Saf. Environ. 1, 177–184.
doi:10.1093/tse/tdz019

[57] Theodorou, C., Velisavljevic, V., Dyo, V., and Nonyelu, F.
(2022). Visual slam algorithms and their application for ar,

mapping, localization and wayfinding. Array 15, 100222.

doi:10.1016/j.array.2022.100222

[58] Tourani, A., Bavle, H., Sanchez-Lopez, J. L., and Voos, H.

(2022). Visual slam: what are the current trends and what to
expect? Sensors 22, 9297. doi:10.3390/s22239297

[59] Mur-Artal, R.; Montiel, J.; Tardos, J. ORB-SLAM: A versatile

and accurate monocular SLAM system. IEEE Trans. Robot.
2015, 31, 1147–1163.

[60] Mur-Artal, R.; Tardós, J.D. ORB-SLAM2: An Open-Source
SLAM System for Monocular, Stereo, and RGB-D Cameras.
IEEE Trans. Robot. 2017, 33, 1255–1262.

[61] Zhan, Z.; Jian, W.; Li, Y.; Yue, Y. A SLAM Map Restoration
Algorithm Based on Submaps and an Undirected Connected
Graph. IEEE Access 2021, 9, 12657–12674.

[62] Abouzahir, M.; Elouardi, A.; Latif, R.; Bouaziz, S.; Tajer, A.

Embedding SLAM algorithms: Has it come of age? Robot.
Auton. Syst. 2018, 100, 14–26.

[63] Yu,J.; Gao, F.; Cao, J.; Yu, C.; Zhang, Z.; Huang, Z.; Wang, Y.;

Yang, H. CNN-based Monocular Decentralized SLAM on

embedded FPGA. In Proceedings of the 2020 IEEE
International Parallel and Distributed Processing Symposium

Workshops (IPDPSW), NewOrleans, LA, USA, 18–22 May
2020; pp. 66–73.

[64] Tateno, K.; Tombari, F.; Laina, I.; Navab, N. CNN-SLAM:

Real-Time Dense Monocular SLAM with Learned Depth
Prediction. In Proceedings of the 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Honolulu,
HI, USA, 21–26 July 2017; pp. 6565–6574.

[65] J. Engel, V. Koltun and D. Cremers, "Direct Sparse Odometry,"

in IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 40, no. 3, pp. 611-625, 1 March 2018, doi:
10.1109/TPAMI.2017.2658577.

Journal of Computer Science and Engineering Research (JCSER) 40

Rajaa W.Ali, Heba Hakim, Mohammed A. Al-Ibadi, A Full Overview of Visual SLAM Algorithms

[66] Jin, Q.; Liu, Y.; Man, Y.; Li, F. Visual SLAM with RGB-D

Cameras. In Proceedings of the 2019 Chinese Control

Conference (CCC), Guangzhou, China, 27–30 July 2019; pp.

4072–4077.

[67] Gao, X.; Wang, R.; Demmel, N.; Cremers, D. LDSO: Direct
Sparse Odometry with Loop Closure. In Proceedings of the

2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Madrid, Spain, 1–5 October 2018.

[68] Boikos, K.; Bouganis, C.S. A high-performance system-on-chip

architecture for direct tracking for SLAM. In Proceedings of the

2017 27th International Conference on Field Programmable
Logic and Applications (FPL), Gent, Belgium, 4–6 September
2017; pp. 1–7.

[69] T. Qin, P. Li and S. Shen, "VINS-Mono: A Robust and

Versatile Monocular Visual-Inertial State Estimator," in IEEE

Transactions on Robotics, vol. 34, no. 4, pp. 1004-1020, Aug.
2018, doi: 10.1109/TRO.2018.2853729.

[70] D. Schlegel, M. Colosi and G. Grisetti, "ProSLAM: Graph

SLAM from a Programmer's Perspective," 2018 IEEE
International Conference on Robotics and Automation (ICRA),

Brisbane, QLD, Australia, 2018, pp. 3833-3840, doi:
10.1109/ICRA.2018.8461180.

[71] M. Sumikura, Y. Shibuya, and K. Sakurada, "OpenVSLAM: A

Versatile Visual SLAM Framework," Proceedings of the 27th
ACM International Conference on Multimedia, pp. 2292-2295,
2019. doi:10.1145/3343031.3350539.

[72] Seiskari, O.; Rantalankila, P.; Kannala, J.; Ylilammi, J.; Rahtu,

E.; Solin, A. HybVIO: Pushing the Limits of Real-Time Visual-

Inertial Odometry. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision (WACV),
Waikoloa, HI, USA, 4–8 January 2022; pp. 701–710.

[73] Merzlyakov, A.; Macenski, S. A Comparison of Modern
General-Purpose Visual SLAM Approaches. In Proceedings of

the 2021 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), Prague, Czech Republic, 27
September–1 October 2021; pp. 9190–9197.

[74] Sturm, J., Engelhard, N., Endres, F., et al. (2012). A benchmark
for RGB-D visual odometry, 3D reconstruction, and SLAM.

*IEEE International Conference on Robotics and Automation
(ICRA)*.

[75] Geiger, A., Lenz, P., & Urtasun, R. (2012). Are we ready for

autonomous driving? The KITTI Vision Benchmark Suite.

*IEEE Conference on Computer Vision and Pattern Recognition
(CVPR)*.

[76] Huebner, M., & Bischof, H. (2013). ICL-NUIM: A dataset for
evaluating visual odometry and SLAM algorithms in indoor
environments. *Technical Report*.

[77] Burri, M., Nikolov, S., & Gohl, P. (2016). The Euroc MAV
dataset. *IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS)*.

[78] Schöps, T., & Cremers, D. (2017). TUM VI benchmark.
Technical Report, Technical University of Munich.

[79] Sturm, J., & Burgard, W. (2011). TUM Mono VO dataset.
Technical Report, Technical University of Munich.

[80] Whelan, T.; Kaess, M.; Johannsson, H.; Fallon, M.; Leonard,
J.J.; McDonald, J. Real-time large-scale dense RGB-D SLAM
with volumetric fusion. Int. J. Robot. Res. 2015, 34, 598–626.

[81] RGB-D SLAM Dataset and Benchmark. Available online:

https://vision.in.tum.de/data/datasets/rgbd-dataset (accessed on
18 September 2024).

[82] KITTI-360. Available online:

http://www.cvlibs.net/datasets/kitti/ (accessed on 18 September
2024).

[83] ICL-NUIM. Available online:

https://www.doc.ic.ac.uk/~ahanda/VaFRIC/iclnuim.html
(accessed on 18 September 2024).

[84] The EuRoC MAV Dataset. Available online:

https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualiner
tialdatasets (accessed on 18 September 2024).

[85] Monocular Visual Odometry Dataset. Available online:
http://vision.in.tum.de/mono-dataset (accessed on 18 September
2024).

[86] Visual-Inertial Dataset. Available online:

https://vision.in.tum.de/data/datasets/visual-inertial-dataset
(accessed on 18 September 2024)

[87] Cityscapes. Available online: https://www.cityscapes-
dataset.com/ (accessed on 18 September 2024).

[88] NYU RGB-D. Available online:

https://cs.nyu.edu/silberman/datasets/ (accessed on 18
September 2024).

[89] MS COCO. Available online:

https://paperswithcode.com/dataset/coco (accessed on 18
September 2024).

[90] The Bonn RGB-D Dynamic Dataset is available at:

https://www.ipb.uni-bonn.de/data/rgbd-dynamic-dataset
(accessed on 18 September 2024).

[91] ORB-SLAM. Available online:
https://github.com/raulmur/ORB_SLAM (accessed on 23
September 2024)

[92] ORB-SLAM2. Available online:
https://github.com/raulmur/ORB_SLAM2 (accessed on 23
September 2024)

[93] CNNSLAM. Available online:

https://github.com/iitmcvg/CNN_SLAM (accessed on 23
September 2024)

[94] DSO: Direct Sparse Odometry. Available online:

https://github.com/JakobEngel/dso (accessed on 23 September
2024)

[95] LDSO: Direct Sparse Odometry with Loop Closure. Available

online: https://github.com/tum-vision/LDSO (accessed on 23
September 2024)

[96] OpenVSLAM. Available online:
https://github.com/xdspacelab/openvslam (accessed on 23
September 2024)

[97] ORB-SLAM3. Available online: https://github.com/UZ-
SLAMLab/ORB_SLAM3 (accessed on 23 September 2024)

[98] Schneider, T., Schubert, T., Schmidt, H., & Zell, A. (2021). RD-
VIO: Robust visual-inertial odometry for mobile augmented

reality in dynamic environments. 2021 IEEE International

Symposium on Mixed and Augmented Reality (ISMAR), 218–
226. https://doi.org/10.1109/ISMAR52148.2021.00038

[99] Leutenegger, S., Furgale, P., Cadena, C., Dellaert, F., &

Siegwart, R. (2022). OKVIS2: Realtime scalable visual-inertial
SLAM with loop closure. arXiv preprint arXiv:2206.04135.
https://arxiv.org/abs/2206.04135

[100] Picard, Q., Chevobbe, S., Darouich, M., and Didier, J.-Y.

(2023). A survey on real time 3d scene reconstruction with slam

methods in embedded systems. arXiv preprint
arXiv:2309.05349.

[101] M. Bloesch, S. Omari, M. Hutter and R. Siegwart, "Robust
visual inertial odometry using a direct EKF-based

approach," 2015 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), Hamburg, Germany,
2015, pp. 298-304, doi: 10.1109/IROS.2015.7353389.

[102] Geneva, P., Yang, Y., Eckenhoff, K., & Huang, G. (2020). DM-

VIO: Delayed Marginalization Visual-Inertial Odometry. 2020
IEEE International Conference on Robotics and Automation

(ICRA), 5796-5802.
https://doi.org/10.1109/ICRA40945.2020.9197424

[103] Von Stumberg, L.; Usenko, V.; Cremers, D. Direct Sparse

Visual-Inertial Odometry Using Dynamic Marginalization. In

Proceedings of the 2018 IEEE International Conference on

Robotics and Automation (ICRA), Brisbane, Australia, 21–25
May 2018; pp. 2510–2517.

[104] Mur-Artal, R.; Tardós, J.D. Visual-Inertial Monocular SLAM
with Map Reuse. IEEE Robot. Autom. Lett. 2017, 2, 796–803.

[105] Zhao, J., & Shen, S. (2019). A review of visual-inertial

simultaneous localization and mapping from filtering-based and

optimization-based perspectives. Robotics and Automation
Letters, 4(2), 361–368.
https://doi.org/10.1109/LRA.2019.2891678

[106] ROVIO. Available online: https://github.com/ethz-asl/rovio
(accessed on 2 October 2024).

https://vision.in.tum.de/data/datasets/rgbd-dataset
http://www.cvlibs.net/datasets/kitti/
https://www.doc.ic.ac.uk/~ahanda/VaFRIC/iclnuim.html
https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
http://vision.in.tum.de/mono-dataset
https://vision.in.tum.de/data/datasets/visual-inertial-dataset
https://www.cityscapes-dataset.com/
https://www.cityscapes-dataset.com/
https://cs.nyu.edu/silberman/datasets/
https://paperswithcode.com/dataset/coco
https://www.ipb.uni-bonn.de/data/rgbd-dynamic-dataset
https://github.com/raulmur/ORB_SLAM2
https://github.com/raulmur/ORB_SLAM2
https://github.com/iitmcvg/CNN_SLAM
https://github.com/JakobEngel/dso
https://github.com/tum-vision/LDSO
https://github.com/xdspacelab/openvslam
https://github.com/UZ-SLAMLab/ORB_SLAM3
https://github.com/UZ-SLAMLab/ORB_SLAM3
https://doi.org/10.1109/ISMAR52148.2021.00038
https://arxiv.org/abs/2206.04135
https://doi.org/10.1109/ICRA40945.2020.9197424
https://doi.org/10.1109/LRA.2019.2891678
https://github.com/ethz-asl/rovio

Journal of Computer Science and Engineering Research (JCSER) 41

Rajaa W.Ali, Heba Hakim, Mohammed A. Al-Ibadi, A Full Overview of Visual SLAM Algorithms

[107] VINS-Mono. Available online: https://github.com/HKUST-
Aerial-Robotics/VINS-Mono (accessed on 2 October 2024).

[108] VI-DSO. Available online: https://github.com/RonaldSun/VI-

Stereo-DSO (accessed on 2 October 2024).

[109] DM-VIO. Available online: https://github.com/lukasvst/dm-vio
(accessed on 2 October 2024).

[110] RD-VIO. Available online: https://github.com/Jianxff/rd_vio
(accessed on 2 October 2024).

[111] Wang,W.;Zhu, D.; Wang, X.; Hu, Y.; Qiu, Y.; Wang, C.; Hu,

Y.; Kapoor, A.; Scherer, S. Tartanair: A dataset to push the
limits of visual slam. In Proceedings of the 2020 IEEE/RSJ

International Conference on Intelligent Robots and Systems

(IROS), Las Vegas, NV, USA, 24 October 2020–24 January
2021; pp. 4909–4916.

[112] Nguyen,T.M.; Yuan, S.; Cao, M.; Lyu, Y.; Nguyen, T.H.; Xie,
L. NTU VIRAL: A Visual-Inertial-Ranging-Lidar dataset, from

an aerial vehicle viewpoint. Int. J. Robot. Res. 2021, 41, 270–
280.

[113] The NTU VIRAL Dataset is available at: https://ntu-
aris.github.io/ntu_viral_dataset (accessed on 4 October 2024).

[114] The TartanAir Dataset is available at:

https://theairlab.org/tartanair-dataset (accessed on 4 October
2024).

[115] Endres, F.; Hess, J.; Sturm, J.; Cremers, D.; Burgard, W. 3-D

Mapping With an RGB-D Camera. IEEE Trans. Robot. 2014,
30, 177–187.

[116] H. Strasdat, A. J. Davison, J. M. M. Montiel, and K. Konolige,

“Double window optimisation for constant time visual SLAM,”
in IEEE Int. Conf. Comput. Vision (ICCV), 2011, pp. 2352–
2359

[117] Mur-Artal, R., & Tardos, J. D. (2017). ORB-SLAM2: An Open-

Source SLAM System for Monocular, Stereo, and RGB-D

Cameras. IEEE Transactions on Robotics, 33(5), 1255–1262.
https://doi.org/10.1109/tro.2017.2705103

[118] Whelan, T., Salas-Moreno, R., Glocker, B., Davison, A. J., &

Leutenegger, S. (2015). ElasticFusion: Real-time dense SLAM
and light source estimation. The International Journal of

Robotics Research, 35(14), 1697-1716.
https://doi.org/10.1177/0278364915591230

[119] Izadi, S., Moore, M., Kim, D., et al. (2011). KinectFusion: Real-

time 3D reconstruction and interaction using a moving depth
camera. In Proceedings of the 24th Annual ACM Symposium

on User Interface Software and Technology (pp. 559-568).
https://doi.org/10.1145/2047196.2047270

[120] Sturm, J., Engelhard, N., Endres, F., Burgard, W., & Cremers,

D. (2012). A benchmark for the evaluation of RGB-D SLAM

systems. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (pp. 573-580).
https://doi.org/10.1109/IROS.2012.6385773

[121] Newcombe, R. A., Davison, A. J., & Reid, I. D. (2011).

KinectFusion: Real-time dense surface mapping and tracking. In

2011 10th IEEE International Symposium on Mixed and
Augmented Reality (pp. 127-136).
https://doi.org/10.1109/ISMAR.2011.6092378

[122] Chen, J., Richard, T., & Jayaraman, P. (2020). A comparative

study of dense SLAM systems for RGB-D sensors. Journal of

Field Robotics, 37(4), 584-602.

https://doi.org/10.1002/rob.21925

[123] rgbdslam. Available online: http://ros.org/wiki/rgbdslam
(accessed on 4 October 2024).

[124] ElasticFusion. Available online:

https://github.com/mp3guy/ElasticFusion (accessed on 4
October 2024).

[125] RTAPMap. Available online: https://introlab.github.io/rtabmap
(accessed on 4 October 2024).

[126] BAD-SLAM. Available online:

https://github.com/ETH3D/badslam (accessed on 4 October
2024).

[127] Tourani, A., Bavle, H., Sanchez-Lopez, J. L., and Voos, H.
(2022). Visual slam: what are the current trends and what to
expect? Sensors 22, 9297. doi:10.3390/s22239297

[128] Mur-Artal, R., Montiel, J. M. M., and Tardos, J. D. (2015). Orb-
slam: a versatile and accurate monocular slam system. IEEE
Trans. robotics 31, 1147–1163. doi:10.1109/tro.2015.2463671

[129] Campos, C., Elvira, R., Rodríguez, J. J. G., Montiel, J. M., and

Tardós, J. D. (2021). Orb-slam3: an accurate open-source

library for visual, visual–inertial, and multimap slam. IEEE
Trans. Robotics 37, 1874–1890. doi:10.1109/tro.2021.3075644

[130] Ragot, N., Khemmar, R., Pokala, A., Rossi, R., and Ertaud, J.-
Y. (2019). “Benchmark of visual slam algorithms: orb-slam2 vs

rtab-map,” in 2019 Eighth International Conference on
Emerging Security Technologies (EST) (IEEE), 1–6.

[131] Mur-A, J. D., and Tars, R. (2014). “Orb-slam: tracking and

mapping recognizable,” in Proceedings of the Workshop on
Multi View Geometry in Robotics (MVIGRO)-RSS.

[132] Mur-Artal, R., Montiel, J. M. M., and Tardos, J. D. (2015). Orb-

slam: a versatile and accurate monocular slam system. IEEE
Trans. robotics 31, 1147–1163. doi:10.1109/tro.2015.2463671

[133] Zang, Q., Zhang, K., Wang, L., and Wu, L. (2023). An adaptive

orb-slam3 system for outdoor dynamic environments. Sensors
23, 1359. doi:10.3390/s23031359

[134] Ca, C., Elvira, R., Rodríguez, J. J. G., Montiel, J. M., and
Tardós, J. D. (2021). Orb slam3: an accurate open-source library

for visual, visual–inertial, and multimap slam. IEEE Trans.

Robotics 37, 1874–1890. doi:10.1109/tro.2021.3075644

[135] Joo, S.-H., Manzoor, S., Rocha, Y. G., Bae, S.-H., Lee, K.-H.,

Kuc, T.-Y., et al. (2020). Autonomous navigation framework for

intelligent robots based on a semantic environment modeling.
Appl. Sci. 10, 3219. doi:10.3390/app10093219

[136] Al-Tawil B, Hempel T, Abdelrahman A and Al-Hamadi A
(2024), A review of visual SLAM for robotics: evolution,

properties, and future applications. Front. Robot. AI
11:1347985. doi: 10.3389/frobt.2024.1347985.

[137] Boikos, K.; Bouganis, C.S. Semi-dense SLAM on an FPGA

SoC. In Proceedings of the 2016 26th International Conference
on Field Programmable Logic and Applications (FPL),
Lausanne, Switzerland, 29 August–2 September 2016; pp. 1–4.

https://github.com/HKUST-Aerial-Robotics/VINS-Mono
https://github.com/HKUST-Aerial-Robotics/VINS-Mono
https://github.com/RonaldSun/VI-Stereo-DSO
https://github.com/RonaldSun/VI-Stereo-DSO
https://github.com/lukasvst/dm-vio
https://github.com/Jianxff/rd_vio
https://ntu-aris.github.io/ntu_viral_dataset
https://ntu-aris.github.io/ntu_viral_dataset
https://theairlab.org/tartanair-dataset
https://doi.org/10.1109/tro.2017.2705103
https://doi.org/10.1177/0278364915591230
https://doi.org/10.1145/2047196.2047270
https://doi.org/10.1109/IROS.2012.6385773
https://doi.org/10.1109/ISMAR.2011.6092378
https://doi.org/10.1002/rob.21925
http://ros.org/wiki/rgbdslam
https://github.com/mp3guy/ElasticFusion
https://introlab.github.io/rtabmap
https://github.com/ETH3D/badslam

